\(\int \frac {\sec (c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx\) [966]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 41, antiderivative size = 293 \[ \int \frac {\sec (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=-\frac {2 \left (A b^2-a b B+2 a^2 C-b^2 C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^3 \sqrt {a+b} d}+\frac {2 (A b+b (B-C)-2 a C) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^2 \sqrt {a+b} d}-\frac {2 \left (A b^2-a (b B-a C)\right ) \tan (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}} \]

[Out]

-2*(A*b^2-B*a*b+2*C*a^2-C*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b
*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/d/(a+b)^(1/2)+2*(A*b+b*(B-C)-2*C*a)*cot(d*x+c
)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(
d*x+c))/(a-b))^(1/2)/b^2/d/(a+b)^(1/2)-2*(A*b^2-a*(B*b-C*a))*tan(d*x+c)/b/(a^2-b^2)/d/(a+b*sec(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 293, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.098, Rules used = {4165, 4090, 3917, 4089} \[ \int \frac {\sec (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=-\frac {2 \cot (c+d x) \left (2 a^2 C-a b B+A b^2-b^2 C\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^3 d \sqrt {a+b}}-\frac {2 \tan (c+d x) \left (A b^2-a (b B-a C)\right )}{b d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}+\frac {2 \cot (c+d x) (-2 a C+A b+b (B-C)) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b^2 d \sqrt {a+b}} \]

[In]

Int[(Sec[c + d*x]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

(-2*(A*b^2 - a*b*B + 2*a^2*C - b^2*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a
+ b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^3*Sqrt[a + b]*d
) + (2*(A*b + b*(B - C) - 2*a*C)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/
(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*Sqrt[a + b]*d) - (
2*(A*b^2 - a*(b*B - a*C))*Tan[c + d*x])/(b*(a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]])

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4090

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[Csc[e + f*x]*((1 +
 Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 4165

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_
.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cot[e + f*x]*((a + b*Csc[e +
 f*x])^(m + 1)/(b*f*(m + 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a + b*Csc[e
+ f*x])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Csc[e
 + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 \left (A b^2-a (b B-a C)\right ) \tan (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {2 \int \frac {\sec (c+d x) \left (\frac {1}{2} b (b B-a (A+C))-\frac {1}{2} \left (A b^2-a b B+2 a^2 C-b^2 C\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{b \left (a^2-b^2\right )} \\ & = -\frac {2 \left (A b^2-a (b B-a C)\right ) \tan (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {((a-b) (A b+b (B-C)-2 a C)) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{b \left (a^2-b^2\right )}+\frac {\left (A b^2-a b B+2 a^2 C-b^2 C\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{b \left (a^2-b^2\right )} \\ & = -\frac {2 \left (A b^2-a b B+2 a^2 C-b^2 C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^3 \sqrt {a+b} d}+\frac {2 (A b+b (B-C)-2 a C) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^2 \sqrt {a+b} d}-\frac {2 \left (A b^2-a (b B-a C)\right ) \tan (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(603\) vs. \(2(293)=586\).

Time = 25.12 (sec) , antiderivative size = 603, normalized size of antiderivative = 2.06 \[ \int \frac {\sec (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {(b+a \cos (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (-\frac {4 \left (A b^2-a b B+2 a^2 C-b^2 C\right ) \sin (c+d x)}{b^2 \left (-a^2+b^2\right )}+\frac {4 \left (A b^2 \sin (c+d x)-a b B \sin (c+d x)+a^2 C \sin (c+d x)\right )}{b \left (-a^2+b^2\right ) (b+a \cos (c+d x))}\right )}{d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) (a+b \sec (c+d x))^{3/2}}+\frac {4 \sqrt {2} \sqrt {\frac {\cos (c+d x)}{(1+\cos (c+d x))^2}} (b+a \cos (c+d x)) \sqrt {\cos (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right )} \left (\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)\right )^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left ((a+b) \left (\left (A b^2-a b B+2 a^2 C-b^2 C\right ) E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )+b (-A b-2 a C+b (B+C)) \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )\right ) \left (\cos (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right )\right )^{3/2} \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}} \sec (c+d x)+\left (A b^2-a b B+2 a^2 C-b^2 C\right ) \cos (c+d x) (b+a \cos (c+d x)) \sec ^4\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{b^2 \left (-a^2+b^2\right ) d \sqrt {\frac {1}{1+\cos (c+d x)}} (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )^{3/2} \sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{3/2}} \]

[In]

Integrate[(Sec[c + d*x]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

((b + a*Cos[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((-4*(A*b^2 - a*b*B + 2*a^2*C - b^2*C)*Sin[c +
 d*x])/(b^2*(-a^2 + b^2)) + (4*(A*b^2*Sin[c + d*x] - a*b*B*Sin[c + d*x] + a^2*C*Sin[c + d*x]))/(b*(-a^2 + b^2)
*(b + a*Cos[c + d*x]))))/(d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*(a + b*Sec[c + d*x])^(3/2)) + (4
*Sqrt[2]*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])^2]*(b + a*Cos[c + d*x])*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^2]*(C
os[(c + d*x)/2]^2*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((a + b)*((A*b^2 - a*b*B + 2*a^2
*C - b^2*C)*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + b*(-(A*b) - 2*a*C + b*(B + C))*EllipticF[Ar
cSin[Tan[(c + d*x)/2]], (a - b)/(a + b)])*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(3/2)*Sqrt[((b + a*Cos[c + d*x])*S
ec[(c + d*x)/2]^2)/(a + b)]*Sec[c + d*x] + (A*b^2 - a*b*B + 2*a^2*C - b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])
*Sec[(c + d*x)/2]^4*Tan[(c + d*x)/2]))/(b^2*(-a^2 + b^2)*d*Sqrt[(1 + Cos[c + d*x])^(-1)]*(A + 2*C + 2*B*Cos[c
+ d*x] + A*Cos[2*c + 2*d*x])*(Sec[(c + d*x)/2]^2)^(3/2)*Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^(3/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(4119\) vs. \(2(273)=546\).

Time = 21.69 (sec) , antiderivative size = 4120, normalized size of antiderivative = 14.06

method result size
default \(\text {Expression too large to display}\) \(4120\)
parts \(\text {Expression too large to display}\) \(4124\)

[In]

int(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/d/b^2/(a+b)/(a-b)*(-2*C*a^3*cos(d*x+c)*sin(d*x+c)-C*a^2*b*sin(d*x+c)+C*b^3*sin(d*x+c)+A*(cos(d*x+c)/(1+cos(
d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(
1/2))*a*b^2-B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(
d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2+2*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(
1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b+C*(cos(d*x+c)/(1+cos(d*x+c)))^
(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b
^2-2*A*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*co
s(d*x+c))/(1+cos(d*x+c)))^(1/2)*b^3*cos(d*x+c)+2*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))
/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^3*cos(d*x+c)-2*B*(cos(d*x+c)/(1+
cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b
))^(1/2))*b^3*cos(d*x+c)-4*C*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^
(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^3*cos(d*x+c)+2*C*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b
)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*b^3*cos(d*x+
c)-2*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-
csc(d*x+c),((a-b)/(a+b))^(1/2))*b^3*cos(d*x+c)-A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(
1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2+B*(cos(d*x+c)/(1+cos(d*x+c)))^
(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2
*b+B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-cs
c(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2-2*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x
+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b+C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/
(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2-A*Elli
pticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(
1+cos(d*x+c)))^(1/2)*b^3*cos(d*x+c)^2+A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x
+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^3*cos(d*x+c)^2-B*(cos(d*x+c)/(1+cos(d*x+c))
)^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b
^3*cos(d*x+c)^2-2*C*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/
(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^3*cos(d*x+c)^2+C*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^
(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*b^3*cos(d*x+c)^2-C*(c
os(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c
),((a-b)/(a+b))^(1/2))*b^3*cos(d*x+c)^2+A*b^3*cos(d*x+c)*sin(d*x+c)-A*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(
a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*b^2*cos(d*x+c
)^2+2*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)
-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)+2*B*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(co
s(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^2*b*cos(d*x+c)-2*A*EllipticE(
cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(
d*x+c)))^(1/2)*a*b^2*cos(d*x+c)+2*B*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*
x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*b^2*cos(d*x+c)-2*B*(cos(d*x+c)/(1+cos(d*x+c)))^
(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b
^2*cos(d*x+c)-4*C*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a
+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^2*b*cos(d*x+c)+2*C*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^
(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*b^2*cos(d*x+c)+4*C*
(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x
+c),((a-b)/(a+b))^(1/2))*a^2*b*cos(d*x+c)+2*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+c
os(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)+A*(cos(d*x+c)/(1+cos(d
*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1
/2))*a*b^2*cos(d*x+c)^2+B*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/
2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^2*b*cos(d*x+c)^2+B*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)
/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*b^2*cos(d*x
+c)^2-B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)
-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)^2-2*C*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(
cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^2*b*cos(d*x+c)^2+C*Elliptic
E(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+co
s(d*x+c)))^(1/2)*a*b^2*cos(d*x+c)^2+2*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x
+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b*cos(d*x+c)^2+C*(cos(d*x+c)/(1+cos(d*x+c
)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))
*a*b^2*cos(d*x+c)^2-B*a*b^2*cos(d*x+c)*sin(d*x+c)+C*a^2*b*cos(d*x+c)*sin(d*x+c)+A*(cos(d*x+c)/(1+cos(d*x+c)))^
(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^3
-B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(
d*x+c),((a-b)/(a+b))^(1/2))*b^3-C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^
(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^3-A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b
+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^3-2*C*(cos(d*x+c)/
(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(
a+b))^(1/2))*a^3+C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE
(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^3-A*a*b^2*cos(d*x+c)*sin(d*x+c)+B*a^2*b*cos(d*x+c)*sin(d*x+c)+C*
a*b^2*cos(d*x+c)*sin(d*x+c))*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(1+cos(d*x+c))

Fricas [F]

\[ \int \frac {\sec (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^3 + B*sec(d*x + c)^2 + A*sec(d*x + c))*sqrt(b*sec(d*x + c) + a)/(b^2*sec(d*x + c)^2 +
 2*a*b*sec(d*x + c) + a^2), x)

Sympy [F]

\[ \int \frac {\sec (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)*sec(c + d*x)/(a + b*sec(c + d*x))**(3/2), x)

Maxima [F(-1)]

Timed out. \[ \int \frac {\sec (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \frac {\sec (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sec(d*x + c)/(b*sec(d*x + c) + a)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\cos \left (c+d\,x\right )\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)*(a + b/cos(c + d*x))^(3/2)),x)

[Out]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)*(a + b/cos(c + d*x))^(3/2)), x)